A Rank-Constrained Matrix Representation for Hypergraph-Based Subspace Clustering
نویسندگان
چکیده
منابع مشابه
Symmetric low-rank representation for subspace clustering
We propose a symmetric low-rank representation (SLRR) method for subspace clustering, which assumes that a data set is approximately drawn from the union of multiple subspaces. The proposed technique can reveal the membership of multiple subspaces through the self-expressiveness property of the data. In particular, the SLRR method considers a collaborative representation combined with low-rank ...
متن کاملRobust latent low rank representation for subspace clustering
Subspace clustering has found wide applications in machine learning, data mining, and computer vision. Latent Low Rank Representation (LatLRR) is one of the state-of-the-art methods for subspace clustering. However, its effectiveness is undermined by a recent discovery that the solution to the noiseless LatLRR model is non-unique. To remedy this issue, we propose choosing the sparest solution i...
متن کاملSubspace clustering using a symmetric low-rank representation
In this paper, we propose a low-rank representation with symmetric constraint (LRRSC) method for robust subspace clustering. Given a collection of data points approximately drawn from multiple subspaces, the proposed technique can simultaneously recover the dimension and members of each subspace. LRRSC extends the original low-rank representation algorithm by integrating a symmetric constraint ...
متن کاملFrom subspace clustering to full-rank matrix completion
Subspace clustering is the problem of finding a multi-subspace representation that best fits a collection of points taken from a high-dimensional space. This type of structure occurs naturally in many applications ranging from bioinformatics, image/text clustering to semi-supervised learning. The companion paper [3] shows that robust and tractable subspace clustering is possible with minimal re...
متن کاملHigh-Rank Matrix Completion and Subspace Clustering with Missing Data
This paper considers the problem of completing a matrix with many missing entries under the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces. This generalizes the standard low-rank matrix completion problem to situations in which the matrix rank can be quite high or even full rank. Since the columns belong to a union of subspaces, this problem may also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/572753